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Background
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Big Picture

Algorithmic game theory: the intersection of game theory and
computer science

Recent advances in AI have led to breakthroughs in various
multi-agent games: Poker, Go, Avalon, Diplomacy, etc.

A key part of these advances is no-regret learning, which is currently
state-of-the-art for finding equilibria
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What Is a Game?

Normal-form games

Representations of strategic interactions with perfect information;
players choose actions simultaneously
Formally, we have:

N: the set of players
Ai : the set of actions played by player i
ui (a): the payoff received by player i if they play action a

Extensive-form games

The goal of these games is to compute equilibrium
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Types of Equilibrium

Pure Nash Equilibrium
Mixed Nash Equilibrium
Correlated Equilibrium
Coarse Correlated Equilibrium
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How do we find equilibria?

Finding Nash equilibrium is computationally hard; no known
polynomial-time algorithms for an arbitrary game

Relax the notion of equilibrium: focus on finding correlated equilibria

We can use regret to help us converge to equilibria

What is regret?

External regret: how much better we could’ve done if we just played
the single best action (in hindsight)
Swap regret: how much better we could’ve done if we swapped each
action we played with another (better) action
External regret ≤ Swap regret
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Regret Minimization

We use no-regret learning to converge to an approximate coarse
correlated equilibrium!!

Basic setup for each iteration t = 1, 2, . . .T of regret minimization:

The player chooses a mixed strategy pt , (a probability distribution over
A)
The adversary chooses a loss vector ℓt : A → [0, 1]
The player plays an action at based on pt and receives loss ℓt(at)
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Existing No-Regret Algorithms
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Overview

No external-regret algorithms
Multiplicative-Weights Update (MWU)

Folklore

Optimistic MWU [SALS15]

Last iteration convergence

No swap-regret algorithms
Blum-Mansour [BM07]

External regret → swap regret

TreeSwap [DDFG24]

Better for very large action spaces

Note that no swap-regret algorithms also minimize external regret
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Multiplicative-Weights Update (MWU)

Maintain weights wi which are assigned to each possible action
i ∈ {1, . . . ,N}

Begin by playing a uniform distribution: w1
i = 1 for all i

Run for many iterations: t = 1, . . .T . For each iteration:

Receive losses ℓti from the adversary
Update the corresponding weights:

w t+1
i = w t

i · (1− η)ℓ
t
i

Play a randomly chosen action based on the weights; we play action i
with probability

pti =
w t
i∑N

j=1 w
t
j
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MWU Pseudocode

Algorithm 1 MWU

1: Input: Learning rate η ∈ (0, 1), number of actions N, time horizon T
2: Initialize: Weights w1

i = 1 for all i ∈ {1, . . . ,N}
3: for t = 1 to T do
4: Normalize weights: pti =

w t
i∑N

j=1 w
t
j

for all i ∈ {1, . . . ,N}

5: Choose action: Randomly select action i with probability pti
6: Receive loss: ℓti for each action i
7: for each action i ∈ {1, . . . ,N} do
8: Update weight: w t+1

i = w t
i · (1− η)ℓ

t
i

9: end for
10: end for
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Blum-Mansour (BM)

pt = stationary distribution of the matrix made up of qti
Ai = no-external-regret algorithms
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TreeSwap

Inspired by Blum-Mansour’s reduction and uses instances of no
external-regret algorithms

The instances of the no-external-regret algorithms are updated in a
blocks, meaning that they are updated after a certain number rounds,
rather than for every round.

Achieves better bounds on swap regret for larger or infinite action
spaces

Makes significant improvements in computational complexity
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Our Algorithm
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Multi-Stage Multiplicative-Weights Update (MS-MWU)

This new algorithm converges significantly faster than any of the
existing no-regret algorithms (OMWU, BM, TreeSwap) across all our
experiments

How it works:

Split the time horizon T into many blocks, each of length M
Run MWU, but each time we enter a new block, reinitialize the
weights to be the average of the weights of the previous block

Intuitively:

Optimistic MWU ”predicts” the next loss, while we are ”predicting”
the next M losses
Jumping to the average = taking a shortcut that takes us closer to
equilibrium
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MS-MWU Pseudocode

Algorithm 2 MS-MWU

1: Input: Number of actions N, time horizon T , decay rate r

2: Initialize: block size M ≈
√
T , η =

√
logN
M , Pcum = (0, . . . , 0)

3: for t = 1 to T do
4: Normalize weights: pti =

w t
i∑N

j=1 w
t
j

for all i ∈ {1, . . . ,N}

5: Choose action: Randomly select action i with probability pti
6: Receive loss: ℓti for each action i
7: Update weights: w t+1

i = w t
i · (1− η)ℓ

t
i for each action i

8: Accumulate strategies: Pcum = Pcum + pt

9: if t (mod M) = 0 then
10: w t = Pcum

M , η = η
r , Pcum = 0

11: end if
12: end for
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Experimental Results
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Methodology

We implemented MWU, OMWU, MS-MWU, Treeswap, and BM

These were run on random games, Kuhn Poker, and normal-form
subgames of the extensive-form game Diplomacy

In all of these games, MS-MWU performed the best experimentally
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Kuhn Poker: MWU vs. BM

MWU converges much faster than BM and minimizes swap regret
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Kuhn Poker: MWU vs. MS-MWU

MS-MWU has last iteration convergence and converges faster than
MWU
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Kuhn Poker: OMWU vs. MS-MWU

MS-MWU also converges faster than OMWU
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Diplomacy Subgame: MWU vs. BM
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Diplomacy Subgame: MWU vs. MS-MWU
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Further Work

Two main questions to focus on:
Why does MS-MWU perform better than all the existing algorithms?
Why does MWU also have good swap regret?

Prove a theoretical error bound for the MS-MWU algorithm

Experiments with more algorithms

Regret matching, Counterfactual regret minimization

Experiments with more games: extended-form, multi-player (3+)

GAMUT, OpenSpiel
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